Economic Analysis: Theory and Practice
 

Abstracting and Indexing

РИНЦ
Referativny Zhurnal VINITI RAS
Worldcat
Google Scholar

Online available

EBSCOhost
Eastview
Elibrary
Biblioclub

Archiving

Cyberleninka (12 month OA embargo)

Methodological approaches to statistical analysis of the banking system

Vol. 18, Iss. 3, MARCH 2019

Received: 17 January 2019

Received in revised form: 28 January 2019

Accepted: 7 February 2019

Available online: 29 March 2019

Subject Heading: MATHEMATICAL METHODS AND MODELS

JEL Classification: С1, С6, G2

Pages: 588–600

https://doi.org/10.24891/ea.18.3.588

Dotsenko O.S. Sevastopol State University, Sevastopol, Russian Federation
plakiddin@mail.ru

ORCID id: not available

Subject The study addresses methods for analyzing bank activities. It intends to investigate procedures for forecasting time series and statistical and mathematical analysis of bank operations.
Objectives The purpose is to improve methods of analyzing and forecasting the operations of a single bank based on АRIMA models, geometric representation of bank performance indicators in space, reliability rating of banks.
Methods The study employs a set of mathematical and statistical methods, namely statistical observation, grouping by individual indicators and a set of indicators using the cluster, vector and rating methods of analysis, method of analyzing time series and interrelations between indicators.
Results I made a forecast of operations of a single bank, using the geometric representation of its parameters. It enabled to evaluate the bank stability during the investigated period. Furthermore, I developed a rating table of banks for a set of indicators. The techniques of the analysis can be used by the management, customers and counterparties of banking institutions when choosing the most reliable bank.
Conclusions The geometric transformation of banking activity parameters simplifies the procedure for making bank reliability ratings and enables a comprehensive analysis of the mechanisms of bank operations. Using the ARIMA methods facilitates a more informative forecast of reliability of banks despite the implicit initial trend and seasonal changes in the constantly changing socio-political and economic situation.

Keywords: bank, forecasting, tuple, rating

References:

  1. Petrov A.Yu., Petrova V.I. Kompleksnyi analiz finansovoi deyatel'nosti banka [Comprehensive analysis of financial activities of a bank]. Moscow, Finansy i statistika Publ., 2007, 560 p.
  2. Dolan E.G., Campbell C.D., Campbell R.G. Den'gi, bankovskoe delo i denezhno-kreditnaya politika [Money, Banking and Monetary Policy]. Moscow, Profiko Publ., 1993, 446 p.
  3. Il'ina S.I. [Ways of enhancement of financial analysis of bank in unstable economic conditions]. Problemy sovremennoi nauki i obrazovaniya, 2016, no. 31, pp. 60–64. URL: Link (In Russ.)
  4. Головач Н.А., Заховай В.Б., Захожай К.В., Казак О.О. Інформаційно-аналітичне забезпечення економічної безпеки (статистичний аспект). Наукові праці МАУП, 2014, no. 42, pp. 158–162.
  5. Semenova Kh.A. [Statistical assessment of financial condition of a bank] Novaya nauka: teoreticheskii i prakticheskii vzglyad, 2016, no. 117-3, pp. 158–161. (In Russ.)
  6. Rose P.S. Commercial Bank Management. Boston, McGraw-Hill/Irwin, 2002, 803 p.
  7. Sinkey J.F.Jr. Finansovyi menedzhment v kommercheskom banke i v industrii finansovykh uslug [Commerical Bank Financial Management in the Financial Services Industry]. Moscow, Al'pina Pablisher Publ., 2017, 1018 p.
  8. Porter R.S. Introduction to Banking Regulation, Supervision and Bank Analysis. EDI, World Bank, 1993, 104 p.
  9. Filimonov S.V. [Problems of information support analysis of the financial condition of a commercial bank]. Ekonomika i upravlenie: problemy, resheniya, 2016, vol. 2, no. 5, pp. 150–153. (In Russ.)
  10. Mel'nikov K.V. [Methodical approach to assessing the financial condition of a commercial bank]. Nauchnyi al'manakh = Science Almanac, 2016, no. 10-1, pp. 227–229. URL: Link (In Russ.)
  11. Sablina E.A. [Statistical assessment of the condition of the Russian banking system after crisis]. Voprosy Statistiki, 2011, no. 7, pp. 68–76. (In Russ.)
  12. Demirgüç-Kunt A., Detragiache E. The Determinants of Banking Crises in Developing and Developed Countries. IMF Staff Papers, 1998, vol. 45, iss. 1, pp. 81–109. URL: Link
  13. Kaminsky G., Reinhart C. The Twin Crises: The Causes of Banking and Balance-of-Payments Problems. The American Economic Review, 1999, vol. 89, iss. 3, pp. 473–500. URL: Link
  14. Volkov A.V. [Forecasting the indicators of commercial bank's activity considering the external environment factors: the Sberbank case study]. FӘn-nauka = FӘn-science, 2012, no. 3, pp. 25–30. (In Russ.)
  15. Chincarini L., Asherie N. An analytical model for the formation of economic clusters. Regional Science and Urban Economics, 2008, vol. 38, iss. 3, pp. 252–270. URL: Link
  16. Anderson T. Vvedenie v mnogomernyi statisticheskii analiz [An Introduction to Multivariate Statistical Analysis]. Moscow, Fizmatgiz Publ., 1963, 500 p.
  17. Kendall M., Stuart A. Mnogomernyi statisticheskii analiz i vremennye ryady [The Advanced Theory of Statistics. Volume 3: Design and Analysis, and Time-Series]. Moscow, Nauka Publ., 1976, 736 p.
  18. Maiba V.V. Кластерна структура банківської системи України. In: Прикладна статистика: проблеми теорії та практики. Київ, Інформаційно-аналітичне агентство, 2008, pp. 463–474.
  19. Kharkevich A.A. Bor'ba s pomekhami [Interference control]. Moscow, Nauka Publ., 1965, 274 p.
  20. Kolmogorov A.N. Osnovnye ponyatiya teorii veroyatnostei [Basic concepts of the probability theory]. Moscow, Nauka Publ., 1974, 119 p.
  21. Anikina I.D., Tolstel' M.S., Gukova A.V., Kirov A.V., Godzhaeva E.S. [The reliability of a commercial bank under economic instability]. Sovremennye problemy nauki i obrazovaniya, 2015, no. 1, part 1, p. 774. (In Russ.) URL: Link

View all articles of issue

 

ISSN 2311-8725 (Online)
ISSN 2073-039X (Print)

Journal current issue

Vol. 18, Iss. 3
March 2019

Archive