Economic Analysis: Theory and Practice
 

Abstracting and Indexing

РИНЦ
Referativny Zhurnal VINITI RAS
Worldcat
Google Scholar

Online available

EBSCOhost
Eastview
Elibrary
Biblioclub

Archiving

Cyberleninka (12 month OA embargo)

Neural network modeling of trends in Russia's higher education development from the perspective of human capital formation

Vol. 18, Iss. 4, APRIL 2019

Received: 20 November 2018

Received in revised form: 22 January 2019

Accepted: 7 March 2019

Available online: 26 April 2019

Subject Heading: ANALYSIS OF HUMAN CAPITAL

JEL Classification: C38, C45, I23, I25, O15

Pages: 642–662

https://doi.org/10.24891/ea.18.4.642

Perova V.I. National Research Lobachevsky State University of Nizhny Novgorod (UNN), Nizhny Novgorod, Russian Federation
perova_vi@mail.ru

ORCID id: not available

Mamaeva N.A. Nizhny Novgorod State Agricultural Academy (NNSAA), Nizhny Novgorod, Russian Federation
tarasova-na-an@rambler.ru

ORCID id: not available

Zakharenko E.S. National Research Lobachevsky State University of Nizhny Novgorod (UNN), Nizhny Novgorod, Russian Federation
sergeevna309@mail.ru

ORCID id: not available

Subject The article considers the specifics of higher education development in the Russian Federation as a factor of human capital formation, which is strategically important for the socio-economic growth of the country.
Objectives Our purpose is to investigate changes in the development of the first and second stages of higher education in Russia, using neural network modeling.
Methods The study rests on the multivariate data analysis. We analyzed the indicators of changes in the higher education development by training program for 2013–2017 with the help of Kohonen self-organizing maps using the STATISTICA software package.
Results Through the neural network modeling, we performed a cluster analysis of eight indicators, characterizing changes in activity of public higher education institutions of the Russian Federation in the field of bachelor's and master's degree programs for 2013–2017. We obtained the distribution of training programs in three clusters. The paper presents the characteristics of each cluster and socio-economic conclusions.
Conclusions The paper shows the impact of the said indicators on human capital. The findings are of practical importance for strategic planning of training programs in higher education institutions of the Russian Federation.

Keywords: human capital, higher education, cluster analysis, neural networks, Kohonen self-organizing maps

References:

  1. Lyubushin N.P., Babicheva N.E., Korolev D.S. [Economic analysis of the opportunities for technological development of Russia (for example nanotechnologies)]. Ekonomicheskii analiz: teoriya i praktika = Economic Analysis: Theory and Practice, 2012, no. 9, pp. 2–11. URL: Link (In Russ.)
  2. Kryukov V.A. [Influence of the diversity factor on the peculiarity of the policy of development of the resource sector and regional economy]. Ekonomika i upravlenie = Economics and Management, 2017, no. 11, pp. 21–30. (In Russ.)
  3. Kuleshov V.V., Untura G.A., Markova V.D. [Developing the knowledge-based economy: The role of innovation projects in the program of region's reindustrialization]. Region: Ekonomika i Sotsiologiya = Region: Economics and Sociology, 2016, no. 3, pp. 28–54. URL: Link (In Russ.)
  4. Novikov A.V., Novikova I.A. [Intellectual capital: Structure, sources and priorities in the formation of the value of the company]. Sibirskaya finansovaya shkola = Siberian Financial School, 2012, no. 2, pp. 117–124. URL: Link (In Russ.)
  5. Shvetsov A.N. [Spatial clustering of innovative activities: Meaning, effects, State support]. Region: Ekonomika i Sotsiologiya = Region: Economics and Sociology, 2015, no. 4, pp. 142–161. URL: Link (In Russ.)
  6. Aganbegyan A.G. [Human capital and its main component – the ‘knowledge economy’ sphere as the main source of socio-economic growth]. Ekonomicheskie strategii = Economic Strategies, 2017, no. 3, pp. 66–79, no. 4, pp. 6–21. URL: Link (In Russ.)
  7. Kuznetsov Yu.A. [Human capital, productivity, and economic growth]. Ekonomicheskii analiz: teoriya i praktika = Economic Analysis: Theory and Practice, 2012, no. 43, pp. 2–14. URL: Link (In Russ.)
  8. Makarov V.L. Stanovlenie ekonomiki znanii v Rossii i mire. V kn.: Ekonomika znanii [Formation of knowledge economy in Russia and the world. In: Knowledge-based economy]. Moscow, INFRA-M Publ., 2008, 432 p.
  9. Makarov V.L. [The Knowledge Economy: Lessons for Russia. Report of Academician V.L. Makarov]. Vestnik Rossiiskoi akademii nauk = Herald of Russian Academy of Sciences, 2003, vol. 73, no. 5, pp. 450–456. URL: Link (In Russ.)
  10. Makarov V.L., Kleiner G.B. Mikroekonomika znanii [Microeconomics of knowledge]. Moscow, Ekonomika Publ., 2007, 204 p.
  11. Soboleva I.V. Chelovecheskii potentsial rossiiskoi ekonomiki: problemy sokhraneniya i razvitiya [Human potential of the Russian economy: Problems of preservation and development]. Moscow, Nauka Publ., 2007, 201 p.
  12. Sukharev M.V. [Human capital in a general knowledge system]. Kreativnaya ekonomika = Journal of Creative Economy, 2017, vol. 11, no. 9, pp. 915–930. URL: Link (In Russ.)
  13. Gil'dingersh M.G., Alekseeva I.A. [Forms and human capital management practices of universities in terms of their innovative development]. Ekonomika truda = Russian Journal of Labor Economics, 2016, vol. 3, iss. 3, pp. 211–228. URL: Link (In Russ.)
  14. Kil'diyarova G.R. [The influence of human capital on innovation processes and the country GDP]. Kreativnaya ekonomika = Journal of Creative Economy, 2015, vol. 9, no. 12, pp. 1647–1656. URL: Link (In Russ.)
  15. Baranov A.O., Slepenkova Yu.M. [Methodological problems of analysis of the reproduction of human capital in Russia]. EKO = ECO, 2018, no. 2, pp. 5–17. (In Russ.) URL: Link
  16. Lavrov E.I., Lavrova L.A. [Human capital as a factor of economic growth]. Vestnik Omskogo universiteta. Ser.: Ekonomika = Herald of Omsk University. Series Economics, 2006, no. 2, pp. 63–69. URL: Link (In Russ.)
  17. Benhabib J., Spiegel M.M. The role of human capital in economic development: Evidence from aggregate cross-country data. Journal of Monetary Economics, 1994, vol. 34, iss. 2, pp. 143–173. URL: Link
  18. Barro R.J., Sala-i-Martin X. Economic Growth. Cambridge, MA, London, MIT Press, 2004, 672 p.
  19. Durlauf S.N., Quah D. Chapter 4. The New Empirics of Economic Growth. In: Handbook of Macroeconomics, 1999, vol. 1, part 1, pp. 235–308. URL: Link01007-1
  20. Lucas R.E.Jr. On the mechanics of economic development. Journal of Monetary Economics, 1988, vol. 22, iss. 1, pp. 3–42. URL: Link90168-7
  21. Quah D. Empirics for growth and distribution: Stratification, polarization, and convergence clubs. Journal of Economic Growth, 1997, vol. 2, iss. 1, pp. 27–59. URL: Link
  22. Erznkyan B.A., Arutyunyan S.M. [The Russian fuel and energy complex at the threshold of the fourth industrial revolution]. Ekonomicheskii analiz: teoriya i praktika = Economic Analysis: Theory and Practice, 2018, vol. 17, iss. 5, pp. 836–855. (In Russ.) URL: Link
  23. Endovitskii D.A. Kompleksnyi analiz i kontrol' investitsionnoi deyatel'nosti: Metodologiya i praktika [Complex analysis and control of investment activity: Methodology and practice]. Moscow, Finansy i statistika Publ., 2001, 398 p.
  24. Kuleshova N.S., Brikach G.E. [The domestic experience in creating the system of material incentives for personnel]. Konkurentosposobnost' v global'nom mire: ekonomika, nauka, tekhnologii = Competitiveness in the Global World: Economics, Science, Technology, 2017, no. 4-1, pp. 67–74. URL: Link (In Russ.)
  25. Varshavskii A.E., Kochetkova E.V. [Analyzing and modeling the demand and supply indicators for engineers and technical specialists]. Ekonomicheskii analiz: teoriya i praktika = Economic Analysis: Theory and Practice, 2018, vol. 17, iss. 5, pp. 886–905. (In Russ.) URL: Link
  26. Kohonen T. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 1982, vol. 43, iss. 1, pp. 59–69. URL: Link
  27. Perova V.I., Avagyan E.A. [Neural network analysis of higher education dynamics indicators in the regions of the Russian Federation as a factor of the country's economic growth]. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. Ser.: Sotsial'nye nauki = Vestnik of Lobachevsky State University of Nizhny Novgorod. Series: Social Sciences, 2017, no. 1, pp. 54–60. URL: Link_unicode/6.pdf (In Russ.)
  28. Neironnye seti. STATISTICA Neural Networks: Metodologiya i tekhnologii sovremennogo analiza dannykh [Neural networks. STATISTICA Neural Networks: Methodology and technologies of modern data analysis]. Moscow, Goryachaya liniya-Telekom Publ., 2008, 392 p.
  29. Deboeck G., Kohonen T. Analiz finansovykh dannykh s pomoshch'yu samoorganizuyushchikhsya kart [Visual Explorations in Finance: with Self-Organizing Maps]. Moscow, Al'pina Publ., 2001,. 317 p.
  30. Becker G.S. Chelovecheskoe povedenie: ekonomicheskii podkhod. Izbrannye trudy po ekonomicheskoi teorii [The Economic Approach to Human Behavior]. Moscow, SU HSE Publ., 2003, 672 p.
  31. Schultz T.W. Investment in Human Capital: The Role of Education and of Research. N.Y., Free Press, 1971, 272 p.
  32. Thurow L. Investment in Human Capital. Belmont, California, Wadsworth Publishing Company, Inc., 1970, 145 p.
  33. Dobrynin A.I., Dyatlov S.A., Tsyrenova E.D. Chelovecheskii kapital v tranzitivnoi ekonomike: formirovanie, otsenka, effektivnost' ispol'zovaniya [Human capital in the transitive economy: Formation, evaluation, utilization efficiency]. St. Petersburg, Nauka Publ., 1999, 309 p.
  34. Kritskii M.M. Chelovecheskii kapital [Human capital]. Leningrad, LGU Publ., 1991, 117 p.
  35. Kapelyushnikov R.I. Skol'ko stoit chelovecheskii kapital Rossii? [How much is the human capital of Russia?]. Moscow, NRU HSE Publ., 2012, 76 p.

View all articles of issue

 

ISSN 2311-8725 (Online)
ISSN 2073-039X (Print)

Journal current issue

Vol. 18, Iss. 7
July 2019

Archive