National Interests: Priorities and Security
 

Abstracting and Indexing

РИНЦ
Referativny Zhurnal VINITI RAS
Worldcat
LCCN Permalink
Google Scholar

Online available

EBSCOhost
Eastview
Elibrary
Biblioclub

Archiving

Cyberleninka (12 month OA embargo)

Forecasting the behavior of the innovative potential of an entity subject to macroeconomic regulation in terms of trends in the Long Kondratieff Cycle

Vol. 14, Iss. 12, DECEMBER 2018

Received: 5 October 2018

Received in revised form: 26 October 2018

Accepted: 15 November 2018

Available online: 14 December 2018

Subject Heading: INNOVATION AND INVESTMENT

JEL Classification: M20, O20, O30

Pages: 2277–2299

https://doi.org/10.24891/ni.14.12.2277

Istomina S.V. AO Atomenergoproect, Rosatom State Corporation Company, Moscow, Russian Federation
istomina_sv@aep.ru

https://orcid.org/0000-0002-3600-4447

Lychagina T.A. Joint Institute for Nuclear Research, Dubna, Moscow Oblast, Russian Federation
lychagina@jinr.ru

https://orcid.org/0000-0002-9047-2399

Pakhomov A.V. AO NPK Dedal, Rosatom State Corporation Company, Dubna, Moscow Oblast, Russian Federation
pakhomov_av@dedal.ru

ORCID id: not available

Pakhomova E.A. Dubna State University, Dubna, Moscow Oblast, Russian Federation
pakhomova.ea@phystech.edu

https://orcid.org/0000-0002-3572-9614

Subject We evaluate the innovative potential of an macroeconomically managed entity using our mathematical tools, field theory and vector analysis based on the Triple Helix concept.
Objectives The research analyzes whether the economic situation is predicable if we use the mathematical tools to determine the innovative potential of the macroentity and the theory of long Kondratieff waves proved by C. Perez.
Methods We review the total results, which were inferred with the mathematical tools intended to determine the innovative potential of the macroentity and the theory of Carlota Perez.
Results We forecasted how the innovative potential of the macroentity will develop, referring to the Russian case, exploring the economic situation within 2000–2015 and adhering to the theory of Carlota Perez in order to detect the phase of the long Kondratieff wave. The mathematical tools helped us observe the innovative potential trends for the given period. Combining the two approaches, we managed to figure out the further trend in the economic situation for the macroentity. The tools allow to forecast further economic developments by analyzing three components of the innovative potential – factors of knowledge intensiveness, profitability, productive capabilities.
Conclusions and Relevance Combining our tool and the theory of long Kondratieff waves, we conclude that Russia is about to face another technological revolution, approaching the forth phase of the Long Kondratieff Cycle. According to Carlota Perez's theory, the forth phase end is the time of great ambivalence. So, for smoother transition, we need measures to create absolutely new technologies, preserve and/or revive the existing expertise.

Keywords: innovation potential, triple helix, knowledge-intensive factor, profitability factor, productive capabilities, Long Kondratieff Cycle

References:

  1. Lotov A.V. Vvedenie v еkonomiko-matematicheskoe modelirovanie [Introduction to economic and mathematical modeling]. Moscow, Nauka Publ., 1984, 392 p.
  2. Ivanilov Yu.P., Lotov A.V. Matematicheskie modeli v еkonomike [Mathematical models in economics]. Moscow, Nauka Publ., 1979, 304 p.
  3. Lebedev V.V. Matematicheskoe modelirovanie sotsial'no-еkonomicheskikh protsessov [Mathematical modeling of socio-economic processes]. Moscow, Izograf Publ., 1997, 224 p.
  4. Lebedev V.V., Lebedev K.V. Matematicheskoe modelirovanie nestatsionarnykh еkonomicheskikh protsessov [Mathematical modeling of non-stationary economic processes]. Moscow, eTest Publ., 2011, 336 p.
  5. Krasnoshchekov P.S., Petrov A.A. Printsipy postroeniya modelei: monografiya [Principles of model building: a monograph]. Moscow, Moscow State University Publ., 1983, 264 p.
  6. Myshkis A.D. Elementy teorii matematicheskikh modelei [Elements of the theory of mathematical models]. Moscow, Nauka Publ., 1994, 191 p.
  7. North D. Ponimanie protsessa ekonomicheskikh izmenenii [Understanding the Process of Economic Change]. Moscow, HSE Publ., 2010, 256 p.
  8. Kondratieff N., Yakovets Yu., Abalkin L. Bol'shie tsikly kon"yunktury i teoriya predvideniya. Izbrannye trudy [Long cycles of the economic situation and the theory of prediction. Selected works]. Moscow, Ekonomika Publ., 2002, 764 p.
  9. Perez C. Tekhnologicheskie revolyutsii i finansovyi kapital. Dinamika puzyrei i periodov protsvetaniya [Technological Revolutions and Financial Capital. Dynamics of Bubbles and Periods of Prosperity]. Moscow, Delo Publ., 2013, 232 p.
  10. Etzkowitz H. Troinaya spiral'. Universitety – Predpriyatiya – Gosudarstvo. Innovatsii v deistvii [The Triple Helix. University – Industry – Government. Innovation in Action]. Tomsk, TUSUR Publ., 2010, 238 p.
  11. Istomina S.V., Lychagina T.A., Pakhomova E.A., Pakhomov A.V. [The Technique for Determining the Innovative Potential of Socio-Economic Actors at Different Hierarchical Levels Through Elements of the Vector Analysis and Field Theory]. Natsional'nye interesy: prioritety i bezopasnost' = National Interests: Priorities and Security, 2018, vol. 14, iss. 1, pp. 97–120. (In Russ.) URL: Link

View all articles of issue

 

ISSN 2311-875X (Online)
ISSN 2073-2872 (Print)

Journal current issue

Vol. 15, Iss. 5
May 2019

Archive